4 research outputs found

    Experiencias de docencia con Microsoft Teams para impartir prácticas informáticas usando software instalado en PoliLabs durante el periodo de COVID-19

    Full text link
    [ES] La presente ponencia pretende exponer las experiencias surgidas durante la impartición de prácticas informáticas online a través de la herramienta Microsoft Teams en la Universitat Politècnica de València, a raíz de la etapa de confinamiento por COVID-19. El trabajo dará a conocer los retos, beneficios y conclusiones al respecto. La asignatura “Radioterapia y Protección Radiológica” de 2º de Grado en Ingeniería Biomédica cuenta con tres prácticas. La tercera de ellas, consiste en establecer una planificación en radioterapia utilizando diferentes softwares médicos. Para impartir esta práctica, se ha usado la herramienta educativa Teams (asociada al paquete informático Office 365 de Microsoft) para la comunicación con el profesor, y por otro lado, el uso de la plataforma Polilabs de la UPV para que los alumnos puedan acceder a los softwares correspondientes. El conjunto de estas dos herramientas permite impartir prácticas informáticas virtuales, gestionadas por el docente, donde los alumnos y el profesor pueden compartir distintos tipos de materiales de clase (documentos, apuntes, vídeos, imágenes, screencasts, cuestionarios…), además de mantener conversaciones interactivas, mandar tareas y realizar actividades de evaluación. Esta ponencia se centrará en ofrecer las conclusiones de esta experiencia pedagógica basada en el sentido de comunidad, la participación y la apertura y será discutido como muy significativo en la configuración de una mejor experiencia educativa de aprendizaje a distancia para el futuro.Juste Vidal, BJ.; Miró Herrero, R.; Mayo Nogueira, P.; Verdú Martín, GJ.; Ortiz Moragón, J. (2021). Experiencias de docencia con Microsoft Teams para impartir prácticas informáticas usando software instalado en PoliLabs durante el periodo de COVID-19. En Proceedings INNODOCT/20. International Conference on Innovation, Documentation and Education. Editorial Universitat Politècnica de València. 513-519. https://doi.org/10.4995/INN2020.2020.11856OCS51351

    Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization

    Full text link
    [EN] Intraoperative radiotherapy using mobile linear accelerators is used for a wide variety of malignancies. However, when large fields are used in combination with high energies, a deterioration of the flatness dose profile is measured with respect to smaller fields and lower energies. Indeed, for the LIAC HWL of Sordina, this deterioration is observed for the 12 MeV beam combined with 10 cm (or larger) diameter applicator. Aimed to solve this problem, a flattening filter has been designed and validated evaluating the feasibility of its usage at the upper part of the applicator. The design of the filter was based on Monte Carlo simulations because of its accuracy in modeling components of clinical devices, among other purposes. The LIAC 10 cm diameter applicator was modeled and simulated independently by two different research groups using two different MC codes, reproducing the heterogeneity of the 12 MeV energy beam. Then, an iterative process of filter design was carried out. Finally, the MC designed conical filter with the optimal size and height to obtain the desired flattened beam was built in-house using a 3D printer. During the experimental validation of the applicator-filter, percentage depth dose, beam profiles, absolute and peripheral dose measurements were performed to demonstrate the effectiveness of the filter addition in the applicator. These measurements conclude that the beam has been flattened, from 5.9% with the standard configuration to 1.6% for the configuration with the filter, without significant increase of the peripheral dose. Consequently, the new filter-applicator LIAC configuration can be used also in a conventional surgery room. A reduction of 16% of the output dose and a reduction of 1.1 mm in the D50 of the percentage depth dose was measured with respect to the original configuration. This work is a proof-of-concept that demonstrates that it is possible to add a filter able to flatten the beam delivered by the Sordina LIAC HWL. Future studies will focus on more refined technical solutions fully compatible with the integrity of the applicator, including its sterilization, to be safely introduced in the clinical practice.The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Giuseppe Felici reports a relationship with S.I.T. Sordina IORT Technologies S.p.A. that includes: employment. We thank the professionals and facilities at the 3D printing and metrology department in the Mechanics Unit at IFIC. JV thanks I. Diaz for measuring the PLA density. We thank S.I.T. SORDINA IORT Tech-nologies SpA for providing the applicator used for testing the filter during the measurements. JV, FB, and JP would like to acknowledge the Spanish "Ministerio de Ciencia e Innovacion" (MCIN) grant PID2021-125096NB-I00 funded by MCIN/AEI/10.13039 and the "Generalitat Valenciana" (GVA) grant PROMETEO/2021/064.Oliver-Gil, S.; Vijande, J.; Tejedor-Aguilar, N.; Miró Herrero, R.; Rovira-Escutia, JJ.; Ballester, F.; Juste-Vidal, B.... (2023). Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization. Radiation Physics and Chemistry. 212. https://doi.org/10.1016/j.radphyschem.2023.11110221

    Práctica de medida de radón con trazas

    Full text link
    Este video didáctico tiene como finalidad presentar a los alumnos la metodología de medición de radón en aire con detectores de trazashttps://media.upv.es/player/?id=583ad9c0-4dc5-11eb-908e-9925424c4939Juste Vidal, BJ. (2021). Práctica de medida de radón con trazas. http://hdl.handle.net/10251/158697DE

    Toolkit implementation to exchange phase-space files between IAEA and MCNP6 monte Carlo code format

    Full text link
    [EN] Purpose: Some Monte Carlo simulation codes can read and write phase space files in IAEA format, which are used to characterize accelerators, brachytherapy seeds and other radiation sources. Moreover, as the format has been standardized, these files can be used with different simulation codes. However, MCNP6 has not still implemented this capability, which complicate the studies involving this kind of sources and the reproducibility of results among independent researchers. Therefore, the purpose of this work is to develop a tool to perform conversions between IAEA and MCNP6 phase space files formats, to be used for Monte Carlo simulations. Materials and Methods: This paper presents a toolkit written in C language that uses the IAEA libraries to convert phase space files between IAEA and MCNP6 format and vice versa. To test the functionality of the provided tool, a set of verification tests has been carried out. In addition, a lin- ear accelerator treatment has been simulated with the PENELOPE library using the PenEasy frame- work, which is already capable to read and write IAEA phase space files, and MCNP6 using the developed tools. Results: Both codes show compatible depth dose curves and profiles in a water tank, demonstrat- ing that the conversion tools work properly. Moreover, the phase space file formats have been converted from IAEA to MCNP6 format and back again to IAEA format, reproducing the very same results. Conclusion: The toolkit developed in this work offers MCNP6 scientific community an external and validated program able to convert phase space files in IAEA format to MCNP6 internal format and use them for Monte Carlo applications. Furthermore, the developed tools provide also the reverse conversion, which allow sharing MCNP6 results with users of other Monte Carlo codes. This capability in the MCNP6 ecosystem provides to the scientific community the ability not only to share radiation sources, but also to facilitate the reproducibility among different groups using different codes via the standard format specified by the IAEA.This study was supported by the program 'Ayudas para la promocion de empleo joven e implantacion de la Garantia Juvenil en I+D+i, Plan Estatal de Investigacion Cientifica y Tecnica e Innovacion 2017-2020. Ministerio de Ciencia, Innovacion y Universidades' from 'Iniciativa de Empleo Juvenil (IEJ)' and Fondo Social Europeo (FSE)' Grant number PEJ2018-001678-A.Oliver-Gil, S.; Juste-Vidal, B.; Miró Herrero, R.; Verdú Martín, GJ. (2023). Toolkit implementation to exchange phase-space files between IAEA and MCNP6 monte Carlo code format. International Journal of Radiation Biology. 99(3):373-383. https://doi.org/10.1080/09553002.2022.211029637338399
    corecore